Determination of concentration of KMnO₄ solution

Objective

Our objective is to determine the strength of KMnO4 solution by titrating it against a standard solution of;

  • Oxalic acid
  • Ferrous ammonium sulphate (Mohr’s salt)

The Theory

What is Titration?

Titration is a common laboratory method of qualitative chemical analysis that can be used to determine the unknown concentration of a solution (analyte). The basis of this process is the reaction between the analyte and a solution of unknown concentration (standard solution). The analyte is taken in a conical flask using a pipette and the solution of known concentration is take in a calibrated burette (titrant).

Some Important Terms in Titration

1. Standard solution

A solution whose concentration is known, is called a standard solution. The substance used to prepare a standard solution is called the primary standard. Oxalic acid and sodium carbonate are some examples.

2. Concentration of a solution

Concentration of a solution is defined as the amount of a solute present in a definite volume of the solvent. Concentration of a solution can be expressed in different ways.

  • Normality: Normality of a solution is defined as the number of gram equivalent of solute per litre of the solution. It is denoted by ‘N’.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»Normality«/mi»«mo»=«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»N«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»b«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»r«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»g«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»m«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»q«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»v«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»n«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»e«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»V«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»h«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mo»(«/mo»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»s«/mi»«mo»)«/mo»«/mrow»«/mfrac»«/math» 

  • Molarity: Molarity of a solution is defined as the number of gram moles of the solute per litre of the solution. It is denoted by ‘M’.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»Molarity«/mi»«mo»=«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»N«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»b«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»r«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»g«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»m«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»e«/mi»«/mrow»«mrow»«mi mathvariant=¨normal¨»V«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»h«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mo»(«/mo»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»n«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»s«/mi»«mo»)«/mo»«/mrow»«/mfrac»«/math»

3. End point of a titration

The endpoint of a titration is the point at which the reaction between the titrant and the analyte becomes complete. Generally the endpoint of a titration is determined using indicators. In some cases, either the reactant or the product can serve as the indicator. A best example is the redox titration using potassium permanganate.

Titrations can be classified as:

  • Acid-Base Titrations or Acidimetry and Alkalimetry
  • Oxidation-Reduction Titrations or Redox Titrations
  • Precipitation Titrations
  • Complexometric Titrations

We will learn about Redox titrations.

Oxidation-Reduction Titrations or Redox Titrations

The titration based on oxidation and reduction reaction between the titrant and analyte is called Redox titration. Oxidation is the process of the addition of oxygen or removal of hydrogen/electron and reduction involves the process of addition of hydrogen/electrons or removal of oxygen. Oxidizing agents are substances that gain one or more electrons and are reduced. Reducing agents are substances that lose one or more electrons and are oxidized. That is, oxidizing agents are electron acceptors, and reducing agents are electron donors.

In redox systems, the titration method can be adopted to determine the strength of a reductant/oxidant using a redox sensitive indicator. Redox titrations involving potassium permanganate are called permanganometric titrations. In these reactions, MnO4- ions acts as the self indicator.

Titration of  KMnO4 against Oxalic acid

Preparation of standard solution of Oxalic acid [250 ml M/10 (0.1 M) solution]

The molecular mass of crystalline oxalic acid is, H2C2O4.2H2O = 126

Weight of oxalic acid crystals required to prepare 1000 ml of 1 M solution = 126 g

Therefore, weight of oxalic acid required to prepare 250 ml 0.1 M solution = «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»126«/mn»«mn»1000«/mn»«/mfrac»«mo»§#215;«/mo»«mn»250«/mn»«mo»§#215;«/mo»«mn»0«/mn»«mo».«/mo»«mn»1«/mn»«mo»=«/mo»«mn»3«/mn»«mo».«/mo»«mn»15«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»g«/mi»«/math»

Determination of strength of KMnO4 using standard solution of oxalic acid

In this titration KMnO4 is the titrant and oxalic acid is the analyte. Here, potassium permanganate is the oxidizing agent and oxalic acid is the reducing agent. The reaction between potassium permanganate and oxalic acid is carried out in an acidic medium because permanganate ion in the acidic medium is a very strong oxidizing agent. Acidity is introduced by adding dil. H2SO4.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«msup»«msub»«mi mathvariant=¨normal¨»MnO«/mi»«mn»4«/mn»«/msub»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»8«/mn»«msup»«mi mathvariant=¨normal¨»H«/mi»«mo»+«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msup»«mi mathvariant=¨normal¨»e«/mi»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»Mn«/mi»«mn»2«/mn»«/msup»«mo»+«/mo»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»4«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«/math»
 

No other indicators are used to determine the endpoint, because KMnO4 acts as the indicator. Permanganate (MnO4-) ion has a dark purple colour. In an acidic medium, MnO4- is reduced to colourless manganous (Mn2+) ions. On reaching the end point, the addition of the last single drop of permanganate imparts a light pink colour to the solution. The chemical reaction that takes place during titration can be represented by the chemical equation.

Molecular equation

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»KMnO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»K«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»MnSO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«mo»[«/mo»«mi mathvariant=¨normal¨»O«/mi»«mo»]«/mo»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»C«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»O«/mi»«mn»4«/mn»«/msub»«mo».«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mo»[«/mo»«mi mathvariant=¨normal¨»O«/mi»«mo»]«/mo»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»CO«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»]«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»Overall«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»reaction«/mi»«mo»:«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»KMn«/mi»«msub»«mn»0«/mn»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»C«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»O«/mi»«mn»4«/mn»«/msub»«mo».«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»K«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»MnSO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»18«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»10«/mn»«msub»«mi mathvariant=¨normal¨»CO«/mi»«mn»2«/mn»«/msub»«/mtd»«/mtr»«/mtable»«/math»

Ionic equation

 «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mi mathvariant=¨normal¨»Mn«/mi»«msup»«msub»«mn»0«/mn»«mn»4«/mn»«/msub»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»8«/mn»«msup»«mi mathvariant=¨normal¨»H«/mi»«mo»+«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msup»«mi mathvariant=¨normal¨»e«/mi»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»Mn«/mi»«mrow»«mn»2«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»4«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»]«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»2«/mn»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«msub»«mi mathvariant=¨normal¨»C«/mi»«mn»2«/mn»«/msub»«msup»«msub»«mi mathvariant=¨normal¨»O«/mi»«mn»4«/mn»«/msub»«mrow»«mn»2«/mn»«mo»-«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»CO«/mi»«mn»2«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»e«/mi»«mo»-«/mo»«/msup»«mo»]«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»Overall«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»reaction«/mi»«mo»:«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«mi mathvariant=¨normal¨»Mn«/mi»«msup»«msub»«mn»0«/mn»«mn»4«/mn»«/msub»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»16«/mn»«msup»«mi mathvariant=¨normal¨»H«/mi»«mo»+«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msub»«mi mathvariant=¨normal¨»C«/mi»«mn»2«/mn»«/msub»«msup»«msub»«mi mathvariant=¨normal¨»O«/mi»«mn»4«/mn»«/msub»«mrow»«mn»2«/mn»«mo»-«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msup»«mi mathvariant=¨normal¨»Mn«/mi»«mrow»«mn»2«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»8«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»10«/mn»«msub»«mi mathvariant=¨normal¨»CO«/mi»«mn»2«/mn»«/msub»«/mtd»«/mtr»«/mtable»«/math»

Balanced chemical equation

From the balanced chemical equation, it is clear that 2 moles of KMnO4 reacts with 5 moles of oxalic acid.

According to the molarity equation,

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»M«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»K«/mi»«mi mathvariant=¨normal¨»M«/mi»«msub»«mi mathvariant=¨normal¨»nO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Volume«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»KMnO«/mi»«mn»4«/mn»«/msub»«/mrow»«mrow»«mi mathvariant=¨normal¨»M«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»x«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»c«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»d«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»V«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»x«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»c«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»d«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»N«/mi»«mi mathvariant=¨normal¨»o«/mi»«mo».«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»K«/mi»«mi mathvariant=¨normal¨»M«/mi»«msub»«mi mathvariant=¨normal¨»nO«/mi»«mn»4«/mn»«/msub»«/mrow»«mrow»«mi mathvariant=¨normal¨»N«/mi»«mi mathvariant=¨normal¨»o«/mi»«mo».«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»x«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»c«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»d«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mn»2«/mn»«mn»5«/mn»«/mfrac»«/math»

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»Therefore«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Molarity«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»KMnO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»M«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»x«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»c«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»d«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»V«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»x«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»c«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»c«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»d«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»2«/mn»«/mrow»«mrow»«mi mathvariant=¨normal¨»V«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»K«/mi»«mi mathvariant=¨normal¨»M«/mi»«msub»«mi mathvariant=¨normal¨»nO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»5«/mn»«/mrow»«/mfrac»«/math»

If oxalic acid is to be titrated, add the required amount of dil. H2SO4 and heat the flask to 60°-70°C. The purpose of heating is to increase the rate of reaction, which otherwise is slow at room temperature.

Titration of Potassium permanganate (KMnO4) against Mohr’s salt solution

Preparation of standard solution of Mohr's salt[250 ml M/20 (0.05 M) solution]

The molecular mass of Mohr's salt is, FeSO4.(NH4)2SO4.6H2O= 392

Weight of  Mohr's salt required to prepare 1000 ml of 1 M solution = 392 g

Therefore, weight of Mohr's salt required to prepare 250 ml 0.05 M Mohr's salt solution = «math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mn»392«/mn»«mn»1000«/mn»«/mfrac»«mo»§#215;«/mo»«mn»250«/mn»«mo»§#215;«/mo»«mn»0«/mn»«mo».«/mo»«mn»05«/mn»«mo»=«/mo»«mn»409«/mn»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»g«/mi»«/math»

Determination of strength of KMnO4 using standard solution of Mohr's salt

In this titration, potassium permanganate is the oxidizing agent and Mohr’s salt is the reducing agent. Mohr’s salt is a double salt of ferrous sulphate and ammonium sulphate and its composition is FeSO4.(NH4)2SO4.6H2O. It is a primary standard. Therefore, its standard solution can be prepared directly. Ferrous ions of Mohr’s salt undergo hydrolysis in aqueous solution. To prevent the hydrolysis, Conc. H2SO4 needs to be added to the Mohr’s salt crystals during the preparation of its standard solution.

In this titration, the MnO4- ion is reduced to Mn2+ in the presence of acid and Fe2+ ions of Mohr’s salt is oxidized to Fe3+

The chemical reaction that occurs in this titration can be represented by the following chemical equations.

Molecular equation

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»KMnO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»K«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»MnSO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»3«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mn»0«/mn»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«mo»[«/mo»«mi mathvariant=¨normal¨»O«/mi»«mo»]«/mo»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»FeSO«/mi»«mn»4«/mn»«/msub»«mo».«/mo»«mo»(«/mo»«msub»«mi mathvariant=¨normal¨»NH«/mi»«mn»4«/mn»«/msub»«msub»«mo»)«/mo»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo».«/mo»«mn»6«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mo»[«/mo»«mi mathvariant=¨normal¨»O«/mi»«mo»]«/mo»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»Fe«/mi»«mn»2«/mn»«/msub»«mo»(«/mo»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«msub»«mo»)«/mo»«mn»3«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«mo»(«/mo»«msub»«mi mathvariant=¨normal¨»NH«/mi»«mn»4«/mn»«/msub»«msub»«mo»)«/mo»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»13«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»]«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»Overall«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»reaction«/mi»«mo»:«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»KMnO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»8«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»10«/mn»«msub»«mi mathvariant=¨normal¨»FeSO«/mi»«mn»4«/mn»«/msub»«mo».«/mo»«mo»(«/mo»«msub»«mi mathvariant=¨normal¨»NH«/mi»«mn»4«/mn»«/msub»«msub»«mo»)«/mo»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo».«/mo»«mn»6«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»K«/mi»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»2«/mn»«msub»«mi mathvariant=¨normal¨»MnSO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msub»«mi mathvariant=¨normal¨»Fe«/mi»«mn»2«/mn»«/msub»«mo»(«/mo»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«msub»«mo»)«/mo»«mn»3«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»10«/mn»«mo»(«/mo»«msub»«mi mathvariant=¨normal¨»NH«/mi»«mn»4«/mn»«/msub»«msub»«mo»)«/mo»«mn»2«/mn»«/msub»«msub»«mi mathvariant=¨normal¨»SO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»48«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«/mtd»«/mtr»«/mtable»«/math»

Ionic equation

In ionic form the reaction can be represented as,

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mtable columnalign=¨left¨ rowspacing=¨0¨»«mtr»«mtd»«msup»«msub»«mi mathvariant=¨normal¨»MnO«/mi»«mn»4«/mn»«/msub»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»8«/mn»«msup»«mi mathvariant=¨normal¨»H«/mi»«mo»+«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msup»«mi mathvariant=¨normal¨»e«/mi»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»Mn«/mi»«mrow»«mn»2«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»4«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«msup»«mi mathvariant=¨normal¨»Fe«/mi»«mrow»«mn»2«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»Fe«/mi»«mrow»«mn»3«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»e«/mi»«mo»-«/mo»«/msup»«mo»]«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»5«/mn»«/mtd»«/mtr»«mtr»«mtd/»«/mtr»«mtr»«mtd»«mi mathvariant=¨normal¨»Overall«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»reaction«/mi»«mo»:«/mo»«mo»§nbsp;«/mo»«msup»«msub»«mi mathvariant=¨normal¨»MnO«/mi»«mn»4«/mn»«/msub»«mo»-«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»8«/mn»«msup»«mi mathvariant=¨normal¨»H«/mi»«mo»+«/mo»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msup»«mi mathvariant=¨normal¨»Fe«/mi»«mrow»«mn»2«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»§#8594;«/mo»«mo»§nbsp;«/mo»«mn»5«/mn»«msup»«mi mathvariant=¨normal¨»Fe«/mi»«mrow»«mn»3«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«msup»«mi mathvariant=¨normal¨»Mn«/mi»«mrow»«mn»2«/mn»«mo»+«/mo»«/mrow»«/msup»«mo»§nbsp;«/mo»«mo»+«/mo»«mo»§nbsp;«/mo»«mn»4«/mn»«msub»«mi mathvariant=¨normal¨»H«/mi»«mn»2«/mn»«/msub»«mi mathvariant=¨normal¨»O«/mi»«/mtd»«/mtr»«/mtable»«/math»

Balanced chemical equation

From the overall balanced chemical equation, it is clear that 2 moles of potassium permanganate react with 10 moles of Mohr’s salt.

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mfrac»«mrow»«mi mathvariant=¨normal¨»M«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»K«/mi»«mi mathvariant=¨normal¨»M«/mi»«msub»«mi mathvariant=¨normal¨»nO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Volume«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»KMnO«/mi»«mn»4«/mn»«/msub»«/mrow»«mrow»«mi mathvariant=¨normal¨»M«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Mohr«/mi»«mo»§apos;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»salt«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Volume«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Mohr«/mi»«mo»§apos;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»salt«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»N«/mi»«mi mathvariant=¨normal¨»o«/mi»«mo».«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»K«/mi»«mi mathvariant=¨normal¨»M«/mi»«msub»«mi mathvariant=¨normal¨»nO«/mi»«mn»4«/mn»«/msub»«/mrow»«mrow»«mi mathvariant=¨normal¨»N«/mi»«mi mathvariant=¨normal¨»o«/mi»«mo».«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»e«/mi»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Mohr«/mi»«mo»§apos;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»salt«/mi»«/mrow»«/mfrac»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mn»2«/mn»«mn»10«/mn»«/mfrac»«/math»

«math xmlns=¨http://www.w3.org/1998/Math/MathML¨»«mi mathvariant=¨normal¨»Therefore«/mi»«mo»,«/mo»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Molarity«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«msub»«mi mathvariant=¨normal¨»KMnO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mo»=«/mo»«mo»§nbsp;«/mo»«mfrac»«mrow»«mi mathvariant=¨normal¨»M«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»a«/mi»«mi mathvariant=¨normal¨»r«/mi»«mi mathvariant=¨normal¨»i«/mi»«mi mathvariant=¨normal¨»t«/mi»«mi mathvariant=¨normal¨»y«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Mohr«/mi»«mo»§apos;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»salt«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Volume«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»of«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»Mohr«/mi»«mo»§apos;«/mo»«mi mathvariant=¨normal¨»s«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»salt«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»2«/mn»«/mrow»«mrow»«mi mathvariant=¨normal¨»V«/mi»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»l«/mi»«mi mathvariant=¨normal¨»u«/mi»«mi mathvariant=¨normal¨»m«/mi»«mi mathvariant=¨normal¨»e«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»o«/mi»«mi mathvariant=¨normal¨»f«/mi»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»K«/mi»«mi mathvariant=¨normal¨»M«/mi»«msub»«mi mathvariant=¨normal¨»nO«/mi»«mn»4«/mn»«/msub»«mo»§nbsp;«/mo»«mi mathvariant=¨normal¨»x«/mi»«mo»§nbsp;«/mo»«mn»10«/mn»«/mrow»«/mfrac»«/math»

Learning Outcome

  • Students understand the terms- volumetric analysis, morarity, molality normality and redox titration.
  • Students acquire the knowledge to calculate the strength of KMnO4 using molarity equation.
  • Students understand the purpose of addition of dil. H2SO4 and the purpose of heating of oxalic acid before titration.
  • Students acquire the skill to prepare standard solutions of oxalic acid and Mohr’s salt.
  • Students understand the apparatus used for a titration.
  • Students acquire the skill to perform the redox-titration in the real lab after understanding the different steps.

 

Cite this Simulator: